Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Public Health Res ; 13(1): 22799036241226817, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38434579

RESUMO

The theory of fetal programming of adult diseases was first proposed by David J.P. Barker in the eighties of the previous century, to explain the higher susceptibility of some people toward the development of ischemic heart disease. According to his hypothesis, poor maternal living conditions during gestation represent an important risk factor for the onset of atherosclerotic heart disease later in life. The analysis of the early phases of fetal development is a fundamental tool for the risk stratification of children and adults, allowing the identification of susceptible or resistant subjects to multiple diseases later in life. Here, we provide a narrative summary of the most relevant evidence supporting the Barker hypothesis in multiple fields of medicine, including neuropsychiatric disorders, such as Parkinson disease and Alzheimer disease, kidney failure, atherosclerosis, coronary heart disease, stroke, diabetes, cancer onset and progression, metabolic syndrome, and infectious diseases including COVID-19. Given the consensus on the role of body weight at birth as a practical indicator of the fetal nutritional status during gestation, every subject with a low birth weight should be considered an "at risk" subject for the development of multiple diseases later in life. The hypothesis of the "physiological regenerative medicine," able to improve fetal organs' development in the perinatal period is discussed, in the light of recent experimental data indicating Thymosin Beta-4 as a powerful growth promoter when administered to pregnant mothers before birth.

2.
Eur Radiol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467940

RESUMO

OBJECTIVE: Our study aimed to explore with cardiovascular magnetic resonance (CMR) the impact of left atrial (LA) and left ventricular (LV) myocardial strain in patients with acute pericarditis and to investigate their possible prognostic significance in adverse outcomes. METHOD: This retrospective study performed CMR scans in 36 consecutive patients with acute pericarditis (24 males, age 52 [23-52]). The primary endpoint was the combination of recurrent pericarditis, constrictive pericarditis, and surgery for pericardial diseases defined as pericardial events. Atrial and ventricular strain function were performed on conventional cine SSFP sequences. RESULTS: After a median follow-up time of 16 months (interquartile range [13-24]), 12 patients with acute pericarditis reached the primary endpoint. In multivariable Cox regression analysis, LA reservoir and LA conduit strain parameters were all independent determinants of adverse pericardial diseases. Conversely, LV myocardial strain parameters did not remain an independent predictor of outcome. With receiving operating characteristics curve analysis, LA conduit and reservoir strain showed excellent predictive performance (area under the curve of 0.914 and 0.895, respectively) for outcome prediction at 12 months. CONCLUSION: LA reservoir and conduit mechanisms on CMR are independently associated with a higher risk of adverse pericardial events. Including atrial strain parameters in the management of acute pericarditis may improve risk stratification. CLINICAL RELEVANCE STATEMENT: Atrial strain could be a suitable non-invasive and non-contrast cardiovascular magnetic resonance parameter for predicting adverse pericardial complications in patients with acute pericarditis. KEY POINTS: • Myocardial strain is a well-validated CMR parameter for risk stratification in cardiovascular diseases. • LA reservoir and conduit functions are significantly associated with adverse pericardial events. • Atrial strain may serve as an additional non-contrast CMR parameter for stratifying patients with acute pericarditis.

3.
J Vasc Surg ; 79(5): 1119-1131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38190926

RESUMO

OBJECTIVES: Cryptogenic stroke represents a type of ischemic stroke with an unknown origin, presenting a significant challenge in both stroke management and prevention. According to the Trial of Org 10,172 in Acute Stroke Treatment criteria, a stroke is categorized as being caused by large artery atherosclerosis only when there is >50% luminal narrowing of the ipsilateral internal carotid artery. However, nonstenosing carotid artery plaques can be an underlying cause of ischemic stroke. Indeed, emerging evidence documents that some features of plaque vulnerability may act as an independent risk factor, regardless of the degree of stenosis, in precipitating cerebrovascular events. This review, drawing from an array of imaging-based studies, explores the predictive values of carotid imaging modalities in the detection of nonstenosing carotid plaque (<50%), that could be the cause of a cerebrovascular event when some features of vulnerability are present. METHODS: Google Scholar, Scopus, and PubMed were searched for articles on cryptogenic stroke and those reporting the association between cryptogenic stroke and imaging features of carotid plaque vulnerability. RESULTS: Despite extensive diagnostic evaluations, the etiology of a considerable proportion of strokes remains undetermined, contributing to the recurrence rate and persistent morbidity in affected individuals. Advances in imaging modalities, such as magnetic resonance imaging, computed tomography scans, and ultrasound examination, facilitate more accurate detection of nonstenosing carotid artery plaque and allow better stratification of stroke risk, leading to a more tailored treatment strategy. CONCLUSIONS: Early detection of nonstenosing carotid plaque with features of vulnerability through carotid imaging techniques impacts the clinical management of cryptogenic stroke, resulting in refined stroke subtype classification and improved patient management. Additional research is required to validate these findings and recommend the integration of these state-of-the-art imaging methodologies into standard diagnostic protocols to improve stroke management and prevention.


Assuntos
Estenose das Carótidas , AVC Isquêmico , Placa Aterosclerótica , Acidente Vascular Cerebral , Humanos , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/terapia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Artérias Carótidas/patologia , Placa Aterosclerótica/complicações
4.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835902

RESUMO

Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.

5.
Acta Radiol ; 64(8): 2347-2356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138467

RESUMO

BACKGROUND: No quantitative computed tomography (CT) biomarker is actually sufficiently accurate to assess Crohn's disease (CD) lesion activity, with adequate precision to guide clinical decisions. PURPOSE: To assess the available literature on the use of iodine concentration (IC), from multi-spectral CT acquisition, as a quantitative parameter able to distinguish healthy from affected bowel and assess CD bowel activity and heterogeneity of activity along the involved segments. MATERIAL AND METHODS: A literature search was conducted to identify original research studies published up to February 2022. The inclusion criteria were original research papers (>10 human participants), English language publications, focus on dual-energy CT (DECT) of CD with iodine quantification (IQ) as an outcome measure. The exclusion criteria were animal-only studies, languages other than English, review articles, case reports, correspondence, and study populations <10 patients. RESULTS: Nine studies were included in this review; all of which showed a strong correlation between IC measurements and CD activity markers, such as CD activity index (CDAI), endoscopy findings and simple endoscopic score for Crohn's disease (SES-CD), and routine CT enterography (CTE) signs and histopathologic score. Statistically significant differences in IC were reported between affected bowel segments and healthy ones (higher P value was P < 0.001), normal segments and those with active inflammation (P < 0.0001) as well as between patients with active disease and those in remission (P < 0.001). CONCLUSION: The mean normalized IC at DECTE could be a reliable tool in assisting radiologists in the diagnosis, classification and grading of CD activity.


Assuntos
Doença de Crohn , Iodo , Humanos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Tomografia Computadorizada por Raios X/métodos , Intestinos , Biomarcadores
6.
Diagnostics (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766587

RESUMO

The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.

7.
Comput Biol Med ; 153: 106492, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621191

RESUMO

BACKGROUND: The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan. METHOD: The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks. RESULT: Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is ∼7% superior to solo DL and ∼15% to solo ML. CONCLUSION: The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Metiltransferases/genética , Metiltransferases/uso terapêutico , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , DNA , Biomarcadores
8.
Int J Cardiol ; 371: 406-412, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162523

RESUMO

BACKGROUND: Current guidelines do not recommend screening for asymptomatic carotid artery stenosis (AsxCS). The rationale behind this recommendation is that detection of AsxCS may lead to an unnecessary carotid intervention. In contrast, screening for abdominal aortic aneurysms is strongly recommended. METHODS: A critical analysis of the literature was performed to evaluate the implications of detecting AsxCS. RESULTS: Patients with AsxCS are at high risk for future stroke, myocardial infarction and vascular death. Population-wide screening for AsxCS should not be recommended. Additionally, screening of high-risk individuals for AsxCS with the purpose of identifying candidates for a carotid intervention is inappropriate. Instead, selective screening for AsxCS should be considered and should be viewed as an opportunity to identify individuals at high risk for atherosclerotic cardiovascular disease and future cardiovascular events for the timely initiation of intensive medical therapy and risk factor modification. CONCLUSIONS: Although mass screening should not be recommended, there are several arguments suggesting that selective screening for AsxCS should be considered. The rationale supporting such selective screening is to optimize risk factor control and to initiate intensive medical therapy for prevention of future cardiovascular events, rather than to identify candidates for an intervention.


Assuntos
Aneurisma da Aorta Abdominal , Estenose das Carótidas , Endarterectomia das Carótidas , Acidente Vascular Cerebral , Humanos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/epidemiologia , Acidente Vascular Cerebral/prevenção & controle , Fatores de Risco , Aneurisma da Aorta Abdominal/diagnóstico , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/complicações , Programas de Rastreamento , Doenças Assintomáticas , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
J Cardiovasc Dev Dis ; 9(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286278

RESUMO

Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.

10.
Eur J Radiol ; 157: 110551, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279627

RESUMO

PURPOSE: The purpose of this narrative review is to describe the clinical applications of advanced computed tomography (CT) and magnetic resonance (MRI) techniques in patients affected by Crohn's disease (CD), giving insights about the added value of artificial intelligence (AI) in this field. METHODS: We performed a literature search comparing standardized and advanced imaging techniques for CD diagnosis. Cross-sectional imaging is essential for the identification of lesions, the assessment of active or relapsing disease and the evaluation of complications. RESULTS: The studies reviewed show that new advanced imaging techniques and new MRI sequences could be integrated into standard protocols, to achieve a reliable quantification of CD activity, improve the lesions' characterization and the evaluation of therapy response. These promising tools are: dual-energy CT (DECT) post-processing techniques, diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI), Magnetization Transfer MRI (MT-MRI) and CINE-MRI. Furthermore, AI solutions show a potential when applied to radiological techniques in these patients. Machine learning (ML) algorithms and radiomic features prove to be useful in improving the diagnostic accuracy of clinicians and in attempting a personalized medicine approach, stratifying patients by predicting their prognosis. CONCLUSIONS: Advanced imaging is crucial in the diagnosis, lesions' characterisation and in the estimation of the abdominal involvement in CD. New AI developments are promising tools that could support doctors in the management of CD affected patients.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Inteligência Artificial , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste
11.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011048

RESUMO

Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of "radiomics and genomics" has been considered under the umbrella of "radiogenomics". Furthermore, AI in a radiogenomics' environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor's characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.

12.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740526

RESUMO

Radiogenomics, a combination of "Radiomics" and "Genomics," using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.

13.
Brain Imaging Behav ; 16(5): 2037-2048, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35622267

RESUMO

This study aimed to evaluate the differences of brain connectivity between healthy subjects (HS) and patients with extracranial internal carotid artery (eICA) stenosis before and after carotid endarterectomy (CEA). An exploratory prospective study was designed. The study population consisted of a patient group (PG) of 20 patients with eICA stenosis eligible for CEA, and a control group (CG) of 20 HS, matched for age and sex. The subjects of the PG group underwent Magnetic Resonance Imaging (MRI) for resting-state functional connectivity MRI (rs-fc MRI) analysis within one week from the CEA (pre-CEA) and 12 months following CEA (post-CEA). The CG underwent a single MRI with the same protocol utilized for the PG. Three region-of-interest to region-of-interest (ROI-to-ROI) rs-fc MRI analyses were conducted: analysis 1 to compare pre-CEA PG and CG; analysis 2 to compare pre-CEA PG and post-CEA PG; analysis 3 to compare post-CEA PG and CG. The Functional Network Connectivity multivariate parametric technique was used for statistical analysis, adopting a p-uncorrected (p-unc) < 0.05 as connection threshold, and a cluster level False Discovery Rate corrected p (p-FDR) < 0.05 as cluster threshold. The clusters were defined by using a data-driven hierarchical clustering procedure. Analysis 1 revealed two clusters of reduced interhemispheric connectivity of pre-CEA PG when compared to CG. Analysis 2 and 3 showed no statistically significant differences. Our exploratory analysis suggests that patients with eICA stenosis have reduced interhemispheric connectivity when compared to a matched control group, and this difference was not evident anymore following endarterectomy.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Humanos , Estudos Prospectivos , Antígeno Carcinoembrionário , Constrição Patológica , Imageamento por Ressonância Magnética/métodos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Estenose das Carótidas/patologia , Encéfalo , Resultado do Tratamento
14.
Angiology ; 73(10): 903-910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412377

RESUMO

Despite the publication of several national/international guidelines, the optimal management of patients with asymptomatic carotid stenosis (AsxCS) remains controversial. This article compares 3 recently released guidelines (the 2020 German-Austrian, the 2021 European Stroke Organization [ESO], and the 2021 Society for Vascular Surgery [SVS] guidelines) vs the 2017 European Society for Vascular Surgery (ESVS) guidelines regarding the optimal management of AsxCS patients.The 2017 ESVS guidelines defined specific imaging/clinical parameters that may identify patient subgroups at high future stroke risk and recommended that carotid endarterectomy (CEA) should or carotid artery stenting (CAS) may be considered for these individuals. The 2020 German-Austrian guidelines provided similar recommendations with the 2017 ESVS Guidelines. The 2021 ESO Guidelines also recommended CEA for AsxCS patients at high risk for stroke on best medical treatment (BMT), but recommended against routine use of CAS in these patients. Finally, the SVS guidelines provided a strong recommendation for CEA+BMT vs BMT alone for low-surgical risk patients with >70% AsxCS. Thus, the ESVS, German-Austrian, and ESO guidelines concurred that all AsxCS patients should receive risk factor modification and BMT, but CEA should or CAS may also be considered for certain AsxCS patient subgroups at high risk for future ipsilateral ischemic stroke.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Acidente Vascular Cerebral , Angioplastia/efeitos adversos , Estenose das Carótidas/complicações , Estenose das Carótidas/terapia , Endarterectomia das Carótidas/efeitos adversos , Humanos , Medição de Risco , Fatores de Risco , Stents/efeitos adversos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Resultado do Tratamento
15.
Comput Biol Med ; 143: 105273, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228172

RESUMO

BACKGROUND: Artificial intelligence (AI) has become a prominent technique for medical diagnosis and represents an essential role in detecting brain tumors. Although AI-based models are widely used in brain lesion segmentation (BLS), understanding their effectiveness is challenging due to their complexity and diversity. Several reviews on brain tumor segmentation are available, but none of them describe a link between the threats due to risk-of-bias (RoB) in AI and its architectures. In our review, we focused on linking RoB and different AI-based architectural Cluster in popular DL framework. Further, due to variance in these designs and input data types in medical imaging, it is necessary to present a narrative review considering all facets of BLS. APPROACH: The proposed study uses a PRISMA strategy based on 75 relevant studies found by searching PubMed, Scopus, and Google Scholar. Based on the architectural evolution, DL studies were subsequently categorized into four classes: convolutional neural network (CNN)-based, encoder-decoder (ED)-based, transfer learning (TL)-based, and hybrid DL (HDL)-based architectures. These studies were then analyzed considering 32 AI attributes, with clusters including AI architecture, imaging modalities, hyper-parameters, performance evaluation metrics, and clinical evaluation. Then, after these studies were scored for all attributes, a composite score was computed, normalized, and ranked. Thereafter, a bias cutoff (AP(ai)Bias 1.0, AtheroPoint, Roseville, CA, USA) was established to detect low-, moderate- and high-bias studies. CONCLUSION: The four classes of architectures, from best-to worst-performing, are TL > ED > CNN > HDL. ED-based models had the lowest AI bias for BLS. This study presents a set of three primary and six secondary recommendations for lowering the RoB.

16.
Comput Biol Med ; 142: 105204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033879

RESUMO

BACKGROUND: Artificial Intelligence (AI), in particular, machine learning (ML) has shown promising results in coronary artery disease (CAD) or cardiovascular disease (CVD) risk prediction. Bias in ML systems is of great interest due to its over-performance and poor clinical delivery. The main objective is to understand the nature of risk-of-bias (RoB) in ML and non-ML studies for CVD risk prediction. METHODS: PRISMA model was used to shortlisting 117 studies, which were analyzed to understand the RoB in ML and non-ML using 46 and 32 attributes, respectively. The mean score for each study was computed and then ranked into three ML and non-ML bias categories, namely low-bias (LB), moderate-bias (MB), and high-bias (HB), derived using two cutoffs. Further, bias computation was validated using the analytical slope method. RESULTS: Five types of the gold standard were identified in the ML design for CAD/CVD risk prediction. The low-moderate and moderate-high bias cutoffs for 24 ML studies (5, 10, and 9 studies for each LB, MB, and HB) and 14 non-ML (3, 4, and 7 studies for each LB, MB, and HB) were in the range of 1.5 to 1.95. BiasML< Biasnon-ML by ∼43%. A set of recommendations were proposed for lowering RoB. CONCLUSION: ML showed a lower bias compared to non-ML. For a robust ML-based CAD/CVD prediction design, it is vital to have (i) stronger outcomes like death or CAC score or coronary artery stenosis; (ii) ensuring scientific/clinical validation; (iii) adaptation of multiethnic groups while practicing unseen AI; (iv) amalgamation of conventional, laboratory, image-based and medication-based biomarkers.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Estenose Coronária , Inteligência Artificial , Doenças Cardiovasculares/diagnóstico , Doença da Artéria Coronariana/diagnóstico , Humanos , Aprendizado de Máquina , Medição de Risco
17.
Br J Radiol ; 94(1124): 20210020, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233483

RESUMO

Anderson-Fabry (FD) disease is a rare X-linked disorder caused by different mutations in the Galactosidase α (GLA) gene, which leads to α-galactosidase A enzyme deficiency and the storage of glycosphingolipids in different kinds of organs, included the heart. This results in myocardial inflammation and left ventricular hypertrophy (LVH) and fibrosis. Echocardiography and cardiac magnetic resonance (C-MRI), in particular with new techniques, such as mapping analysis, late gadolinium enhancement (LGE) assessment and strain imaging, are important tools that allow a correct diagnosis, discriminating FD from other hypertrophic heart conditions. C-MRI is able to detect tissue alterations in the early stages of the disease, when an appropriate treatment could be more effective, and it has a fundamental role in monitoring therapy.


Assuntos
Técnicas de Imagem Cardíaca , Doença de Fabry/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Humanos
18.
Int J Comput Assist Radiol Surg ; 16(3): 423-434, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33532975

RESUMO

BACKGROUND: COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans. METHODOLOGY: Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based (VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation (90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evaluation and bispectrum analysis for CT lung characterisation. RESULTS: Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-glass opacities (GGO), further validating our AI models. CONCLUSIONS: We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion in CoP patients. Further, our online system takes < 2 s for inference.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
19.
Cardiovasc Diagn Ther ; 10(6): 2005-2017, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33381440

RESUMO

In the last decades, significant advances have been made in the preventive approaches to cardiovascular disease. Even so, coronary artery disease remains one of the main causes of morbidity and mortality worldwide. Invasive imaging modalities, such as intravascular ultrasound or optical coherence tomography, have played a key role in the comprehension of the pathological processes underlying myocardial infarction and cerebrovascular disease. These imaging techniques have contributed greatly to the identification and phenotyping of the culprit lesion, the so-called vulnerable plaque. Coronary computed tomographic angiography (CCTA) has emerged in more recent years as the non-invasive modality of choice in the study of coronary atherosclerosis, showing in many studies a diagnostic yield comparable to invasive approaches. Moreover, being able to describe extra-luminal characteristics of the affected vessel, CCTA has greatly contributed towards shifting the attention of researchers from the mere quantification of luminal stenosis to the identification of adverse plaque features, which appear to have a stronger prognostic value. However, the identification of some of the hallmarks of vulnerable plaques is qualitative in nature and, therefore, subject to some degree of inter-reader variability. Moreover, CCTA is still unable to identify some fine markers of plaque vulnerability which can be detected by invasive techniques, such as neovascularization and plaque erosion, among others. Nonetheless, radiological images can be viewed as vast 3-D datasets which, via the use of recent technology, allow for the extraction of numerous quantitative features that may be used to accurately phenotype a given lesion. Radiomics is the process of extrapolating innumerable parameters from a given region of interest, with the goal of establishing correlations between quantitative variables and clinical data. These datasets can then be manipulated to create predictive models via the use of automated algorithms in a process called machine learning. As a result of these approaches, radiological images may offer information regarding the characterization of a plaque which can go much beyond the boundaries of what can be qualitatively asserted by the human eye, contributing to expanding the knowledge of the disease and ultimately assist clinical decisions. Thus far, radiomics has found its more consistent area of application in the field of oncology; to present date, the amount of clinical data regarding coronary artery disease is still relatively small, partly due to the technical difficulties associated with the implementation of such techniques to the study of a small and geometrically complex lesion such as the coronary plaque. The present review, after a summary of the imaging modalities most commonly used nowadays in the study of coronary plaques, will provide a perspective on the application of radiomic analysis to coronary artery disease.

20.
J Med Syst ; 44(12): 208, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175247

RESUMO

This study developed an office-based cardiovascular risk calculator using a machine learning (ML) algorithm that utilized a focused carotid ultrasound. The design of this study was divided into three steps. The first step involved collecting 18 office-based biomarkers consisting of six clinical risk factors (age, sex, body mass index, systolic blood pressure, diastolic blood pressure, and smoking) and 12 carotid ultrasound image-based phenotypes. The second step consisted of the design of an ML-based cardiovascular risk calculator-called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0ML) for risk stratification, considering chronic kidney disease (CKD) as the surrogate endpoint of cardiovascular disease. The last step consisted of comparing AECRS2.0ML against the currently utilized office-based CVD calculators, namely the Framingham risk score (FRS) and the World Health Organization (WHO) risk scores. A cohort of 379 Asian-Indian patients with type-2 diabetes mellitus, hypertension, and chronic kidney disease (stage 1 to 5) were recruited for this cross-sectional study. From this retrospective cohort, 758 ultrasound scan images were acquired from the far walls of the left and right common carotid arteries [mean age = 55 ± 10.8 years, 67.28% males, 91.82% diabetic, 86.54% hypertensive, and 83.11% with CKD]. The mean office-based cardiovascular risk estimates using FRS and WHO calculators were 26% and 19%, respectively. AECRS2.0ML demonstrated a better risk stratification ability having a higher area-under-the-curve against FRS and WHO by ~30% (0.871 vs. 0.669) and ~ 20% (0.871 vs. 0.727), respectively. The office-based machine-learning cardiovascular risk-stratification tool (AECRS2.0ML) shows superior performance compared to currently available conventional cardiovascular risk calculators.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico por imagem , Estudos Transversais , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Recém-Nascido , Aprendizado de Máquina , Masculino , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA